
480 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 3, MARCH 2001

A Fast Multipole-Method-Based Calculation of the
Capacitance Matrix for Multiple Conductors

Above Stratified Dielectric Media
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Abstract—An efficient static fast-multipole-method (FMM)-
based algorithm is presented in this paper for the evaluation of the
parasitic capacitance of three-dimensional microstrip signal lines
above stratified dielectric media. The effect of dielectric interfaces
on the capacitance matrix is included in the stage of FMM when
outgoing multipole expansions are used to form local multipole
expansions by the use of interpolated image outgoing-to-local
multipole translation functions. The increase in computation time
and memory usage, compared to the free-space case, is, therefore,
small. The algorithm retains ( ) computational and memory
complexity of the free-space FMM, where is the number of
conductor patches.

I. INTRODUCTION

ECENT advances in the very large scale integration (VLSI)
technology further the need for fast and accurate calculation
of the capacitance and inductance matrices of general three-
dimensional (3-D) multiconductor structures in the presence
of layered dielectric interfaces. In calculating the capacitance
matrix, one attractive approach is to compute the charge
densities on the conductor surfaces using an integral equation.
The kernel of the integral equation can be the free-space
Green’s function [1] or the closed-form spatial Green’s
functions [2]–[5]. This integral-equation method only requires
the discretization of the surfaces of the conductors and
finite dielectrics and, therefore, is much more efficient than
the finite-difference (FD) and finite-element (FE) methods
[6]–[8], when the integral equation can be solved at a
low computation cost using, for example, the fast multipole
method (FMM).

The method of moments (MoM) can be used to solve the in-
tegral equation of unknown charge densities by expanding the
charge densities with a set of basis functions. The expansion
reduces the integral equation to a dense matrix equation that
computes a potential vector by multiplying the Green’s func-
tion matrix with a vector of charges. A rudimentary approach to
solving this matrix equation for the vector of charges is by di-
rectly inverting the dense Green’s function matrix. Such matrix
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inversion requires operations. The computation cost can
be greatly reduced by using an iterative method, which requires

operations per iteration. The storage requirement for the
matrix is .

The evaluation of potentials, done by a matrix–vector
multiplication, is often the most expensive part of an iterative
method. The static FMM developed by Greengard and Rokhlin
performs a matrix–vector product in calculations [9],
[10]. Leathrum and Board produced a parallelized version
of this algorithm [11]. Recent work by Nabors and White
incorporated static FMM into a fast algorithm for extracting
the capacitance matrix of multiple conductors either in a
homogeneous dielectric medium [12], [13] or in an arbi-
trary piecewise-homogeneous dielectric medium [14], [15].
Jandhyalaet al. extended the static FMM to geometries that
have multiple conductors and multiple dielectric interfaces by
considering the image charges as additional sources [16], [17].

In this paper, we will also study conductor geometries that
include multiple layers of dielectrics with an FMM. The nov-
elty of our method is that the effect of dielectric interfaces are
exactly accounted for to within numerical precision. Also, the
CPU workload is only slightly more than that of the free-space
algorithm. Furthermore, the dielectric interfaces do not affect
the stage of recursive division of the space occupied by the con-
ductor structures, the stage of forming outgoing multipole ex-
pansions, and the stage of forming local multipole expansions
from the parent-level local multipole expansions. The effects of
dielectric interfaces to the capacitance matrix are included in
the stage when outgoing multipole expansions are used to form
local multipole expansions. The bookkeeping of this method,
therefore, is quite simple. It also has the advantage that the pres-
ence of layered dielectrics and, hence, the presence of image
charge panels, does not enlarge the spatial size of the conductor
structure needed to be enclosed. This new method retains the

computational complexity of an FMM and has
memory requirement as .

II. GENERAL FORMULATION

A system of arbitrarily shaped 3-D conducting objects is
placed above layers of dielectrics, as depicted in Fig. 1. The
layers of dielectrics are infinite in the -plane. The analysis
of such a structure is important in RF frequency analog circuits
and integrated circuits.
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Fig. 1. Multiple conductors lying above stratified dielectric media.

One method of calculating the capacitance matrix is to find
the charge distribution on the surfaces of the conductors.
The capacitance matrix is defined by the relation

(1)

where , is the total charge on conductor
, and is the voltage on conductor . The th element

of the capacitance matrix can be found by calculating
induced on conductor when conductor is at 1 V, while all
other conductors are at 0 V.

The total charge on conductoris found by integrating the
charge density over the surface of the conductor

(2)

where is the surface of conductor and the charge density
is the solution to the integral equation

(3)

In (3), is the potential, is the surface of theth image of
conductor , and is the charge density on theth image
of conductor . The image charge density is related to the
original charge density by a scalar factor given by

(4)

For a dielectric interface at , with thickness , above
ground plane, the scalar factorsare given by

and are given by

where .

The surface of the conductors is discretized intotriangular
patches using the MoM. For simplicity, we assume is
constant on each patch and use the point-matching method. The
potential on theth patch can be written as

(5)
where is the surface of the th triangular patch. If (5) is
solved for when if , and when if

, then the th element of the capacitance matrix is

(6)

Equation (5) can be discretized through the MoM in the form
of a matrix equation of unknown

(7)

The matrix in (7) has the elements

(8)

When (7) is solved for using the iterative conjugate gradient
(CG) method, the computation cost of each iteration is .
A static FMM can be used to reduce this cost to .

III. SIMPLE VIEW OF THE FREE-SPACESTATIC FMM

Consider a group of charges located within a sphere of
radius around some origin. The potential because of these
charges outside of the sphere can be written as an expansion of
outgoing spherical harmonics1 about the origin [18]

(9)

where are the outgoing multipole coefficients given by

(10)

and are the spherical harmonics. The potential can
be approximated by summing the expansion to a finite order

(11)

with an error bound . Suppose we wish to com-
pute the potential at field points outside of a sphere of ra-
dius about the same origin, with (see Fig. 2). The
naive direct approach will require operations. However, if

and are very large, and the upper limit for the error bound
can be smaller than the specified tolerance for somesuch that

, then the potential at field points can be

1r Y (�; �) is known as the outgoing multipole or spherical har-
monic expansion because it represents a field that is outgoing and vanishes at
infinity.
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Fig. 2. If the charges are distributed inside the sphere of radiusR , then the
potential at field points outside of the sphere of radiusR can be evaluated
efficiently by first constructing the outgoing multipole expansion and then
applying (11).

Fig. 3. If the charges are distributed outside of the sphere of radiusR , then
the potential at field points inside of the sphere of radiusR can be evaluated
efficiently by first separating the charges into small groups, then constructing the
outgoing multipole expansion for each group, and then translating the multipole
expansions to a local multipole expansion, and then applying (13).

evaluated efficiently by first constructing the orderoutgoing
multipole expansion in operations, and then com-
puting the potential using the outgoing multipole expansion in

operations. The total operation count of this approach
is . This is especially true if .

Consider the situation in Fig. 3. There areboxes, each with
an outgoing multipole expansion of orderoutside the sphere
of radius . We wish to compute the potential due to these out-
going multipole expansions at field points inside the sphere
of radius . It has been shown that, in this case, we can trans-
late the outgoing multipole coefficients of orderto one local
multipole coefficients of the same order using formula

(12)

and then use the coefficients in the local multipole expansion2

via the formula

(13)
to evaluate the potential at the field points within the box
inside the circle of radius . The expression for in
(12) is given in the Appendix. It should be noted that the error
bound for using the truncated local multipole expansion is

. The computation cost is
operations. This is much cheaper than a direct calculation.

A simple two-level free-space static FMM is outlined in the
following steps to show how outgoing and local multipole ex-
pansions can be used to reduce the computation cost of the ma-
trix–vector multiplication in (7).

Step 1) Box the conductor structure using a cube, and then
partition the cube into equally sized child cubes.

Step 2) Normalize all distances with respect to the side
length of the child cubes.

Step 3) Take and , and determine the
order of the outgoing multipole expansionneeded
to achieve the desired accuracy.

Step 4) Calculate outgoing multipole coefficients for each
child cube by (10). We call this the aggregation of the
different source fields into one common multipole
field centered within each box.

Step 5) Calculate local multipole coefficients by translating
the outgoing multipole expansions outside of the
sphere of radius into the circle of radius (see
Fig. 3). This is repeated for each child cube.

Step 6) For each field point within a child cube, calculate
the potential due to charges outside of the sphere of
radius using the local expansion and (13). We call
this the disaggregation process, as it is the reverse of
the aggregation process.

Step 7) For each field point in a child cube, calculate directly
the potential due to the charges within the given cube
and the cubes that are contiguous to the given cube.

The efficiency of the two-level algorithm outlined above can
be improved through the use of multilevel algorithms. Detailed
description of such algorithms can be found in [10] and [12].

IV. TWO-LEVEL MULTILAYER STATIC FMM

Because of its simplicity, we will use the two-level algorithm
to illustrate the incorporation of layer dielectric effects. When
solving a multilayer electrostatic problem using the method of
images, the dielectric media are replaced with image charges at
appropriate locations. We will not work directly with the image
charges. Instead, we will utilize the images of the outgoing mul-
tipole expansions to create an efficient FMM algorithm.

Definition 4.1: The th image cube of a cube is theth mirror
image of the given cube.

The concept of image cube can help us compute the image
outgoing multipole expansions from the original outgoing mul-

2(r ) Y (� ; � ) is known as the incoming or local multipole expansion
because it represents an incoming field regular atr = 0.
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Fig. 4. Image cube is similarly defined as the image charges, i.e., theith image
cube is theith mirror image of the original cube.

Fig. 5. Multipole expansion of an image charge is formed with zenith angle
� � �.

tipole expansion. It is easy to see from Fig. 4 that if an outgoing
multipole expansion is constructed from a charge with respect
to the center of a cube, then theth image outgoing multipole
expansion of this outgoing multipole expansion is the expan-
sion of the th image charge with respect to the center of theth
image cube.

In calculating the outgoing multipole expansion of the image
charge, we note that the zenith angle between the image charge
and image cube center is changed to , as shown in Fig. 5.
The normalized (with respect to the side length of the cubes)
order outgoing multipole expansion of chargeabout a
cube center is given by

(14)

Fig. 6. In the presence of multilayer medium, there are source
outgoing-to-local multipole translations as well as image outgoing-to-local
multipole translations.

where is the vector between and the cube center andis
the side length of the cubes. The spherical harmonics have the
well-known property that

(15)

Using this property, the order outgoing multipole expansion
of the th image charge, with strength , about the th image
cube center is

(16)

For a simple two-level multilayer FMM, we can modify
Step 5 of the free-space algorithm to include the translations
of image outgoing multipole expansions (see Fig. 6). The
translation of one outgoing multipole expansion to a local
expansion of order now takes the form of

(17)
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Function in (17) is defined as

(18)

In defining , we used the fact that can be determined
from and the dielectric thicknesses. In practice, the infinite
sum in (18) can be truncated. Since the absolute value of
monotonically decreases with increasing, a simple procedure
is to neglect images with the absolute value ofless than some
preset small value.

V. MULTILEVEL MULTILAYER STATIC FMM

The algorithm described in Section IV is quite simple and is
for pedagogical purposes. The approach is impractical because
computing the outgoing-to-local multipole translation functions

and on the fly is very expensive.
For the discussion of a more sophisticated multilevel algo-

rithm, we need the following definitions from the free-space
multilevel FMM.

Definition 5.1: Nearest neighbors of a cube are the same-
level cubes that shared at least one corner with a given cube.
There are, at most, 26 nearest neighbors to a given cube.

Definition 5.2: Interaction cubes of a cube are the children of
the nearest neighbors of the parent of the given cube, excluding
the nearest neighbors of the given cube. There are, at most, 189
interaction cubes to a given cube.

In the free-space multilevel FMM, the sources are enclosed in
a large cube. This large cube is named the level-0 cube, which is
divided into eight equally sized level-1 child cubes. Each child
cube is recursively subdivided into smaller cubes until none of
the finest level cubes contains more than a fixed number of
source patches. The relationships between the cubes are stored
in a tree structure.

For a cube on a given level, only the outgoing multipole ex-
pansions from the interaction cubes are translated to the local
expansion of that cube. In the free-space static FMM, there are
316 possible interaction cube locations (see Fig. 7) and, there-
fore, 316 unique outgoing-to-local multipole translation ma-
trices. Furthermore, because of the scale-invariance property of
electrostatics, one set of this 316 unique outgoing-to-local mul-
tipole translation matrices can be used by all levels if outgoing
and local multipole expansions are constructed using normal-
ized distances. This set of translation matrices are calculated
and stored beforehand. The problem becomes much more com-
plex in the presence of a multilayer dielectric medium. Since
the location of the first image of a cube is related to its absolute
-coordinate, for the th level of a tree structure, there are ap-

proximately unique image outgoing-to-local multipole
translation matrices.

This requirement is evident in Fig. 8, in which two different
sections of a tree level are shown with their first images. The
outgoing-to-local multipole translations from source cubeto
destination cube and from source cube to destination cube

use the same translation matrix, but because cubesand
have different -coordinates, the outgoing-to-local multipole

translations from the image of cubeto cube and from the
image of cube to cube will use two different matrices.

Fig. 7. Shaded cubes are the possible interaction cube locations of cubeD

whenx = 0.

Fig. 8. Relative position of cubeS to cubeD is the same as cubeS to cube
D , but because the absolute coordinates of cubeD and cubeD are different,
the outgoing-to-local multipole translation from cubeS to cubeD is not
the same as from cubeS to cubeD .

There are possible -coordinates for level cube cen-
ters, which give rise to unique matrices for image
outgoing-to-local multipole translations. The required number
of levels is proportional to ; hence, the storage re-
quirement for the image outgoing-to-local multipole translation
matrices becomes unacceptable very quickly with the number
of unknowns.

To alleviate the excessive memory requirement, the transla-
tion function is rewritten as .
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Fig. 9. Accuracy of the interpolation off (z; x = 1:0; y = 1:0) with 40 nodes.

Here, is the level number and is the normalized (with
respect to the cube side length of level) Cartesian representa-
tion of . There are 49 different func-
tions for level , one for each unique combination of . As
mentioned above, computing on the fly is very
computationally intensive. The computational complexity can
be greatly reduced with an interpolation technique like the well-
known cubic spline function. Since is a smooth function
that decays rapidly with increases in the magnitude of, accu-
rate interpolation is possible with logarithmic spacing. A two-
interface geometry, with a normalized dielectric thickness of
0.4, is used to illustrate the accuracy of the interpolation. Fig. 9
is a plot of the relative error of interpolating .
A maximum relative error of about 2% was achieved with 40
nodes.

In a free-space static FMM, the memory requirement is
, where kB and MB. In multilayer static

FMMs, the memory requirement is . The
constant represents the additional memory requirement for
the image terms. The value of is proportional to the order of
multipole expansions and to the number of nodes used to inter-
polate the image outgoing-to-local multipole translation func-
tions. When the order of multipole expansion is four and the
number of interpolation nodes is 40, MB.

VI. OPTIMIZING MULTILEVEL MULTILAYER STATIC FMM

The multilevel multilayer static FMM can be optimized in
terms of memory use and CPU time.

As mentioned in Section V, when the order of multipole ex-
pansion is four and the number of interpolation nodes is 40,

MB. This number drops to 17 MB and 6 MB
for the respective multipole expansion orders of three and two.
Since higher order multipole fields decay much faster with dis-
tance than lower order multipole fields, it is memory efficient
to interpolate for and only up to the
quadrupole terms. The image outgoing-to-local multipole trans-
lation matrices of are calculated and stored for
the cubes whose normalized center-to-dielectric distance is less
than 3.0. It should be pointed out that because these cubes are
close to one of the sides of the level-0 cube (see Fig. 10), only
partial sets of the 316 image outgoing-to-local multipole trans-
lation matrices are required.

To save CPU time, we note that in the free-space algorithm,
the maximum normalized distance for an outgoing-to-local
multipole translation is . In the multilayer algorithm, on
the other hand, the distance for an outgoing-to-local multipole
translation can be very large, especially for the image of an
outgoing multipole expansion that is high above the dielectric
interface. When this is the case, we can translate only the
monopole and dipole terms of the image outgoing multipole.
Since the number of multipoles for an expansion of order
is , the saving in the number of operations is very
significant.

For this algorithm, the worst CPU performance observed is
approximately four times that of the free-space algorithm. This
is caused mainly by the cubic-spline interpolation. For the most
common scenario of a thin microstrip printed on top of a mul-
tilayer dielectric medium, the CPU time is less than two times
that of the free-space algorithm. If the conductors are far above
the dielectric interface, the increase in CPU time is almost neg-
ligible.
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Fig. 10. There are 178 and 218 possible interaction cube locations, respectively, and, therefore, 178 and 218 possible image interaction cube locations for the
two layers of cubes that are closest to the dielectric interface.

Fig. 11. Conducting sphere lying above two layers of dielectrics.

VII. N UMERICAL RESULTS

The accuracy of the method outlined in the previous section
is tested for the case of a unit sphere in the presence of two di-
electric interfaces, as shown in Fig. 11. The unit sphere is cen-
tered at the origin and is in free space. The first interface occurs
at , with . The second interface occurs at

. In Fig. 12, the capacitance of the conductor
sphere as calculated by the multilevel multilayer static FMM
is plotted, along with a plot of the relative error comparing to
the values calculated by the MoM. A total of 11 images were
included in the calculation, with . More im-
ages can be included at the cost of longer setup time, but the
CPU time per iteration will not be affected.

The algorithm is employed to calculate the fringing field ef-
fects on the capacitance of a circular microstrip disk with unit
radius (Fig. 13). The accuracy of our method is further verified
by comparisons to the numerical results in [19] and the asymp-
totic formula in [20]. In Tables I–III, rows marked with “NM”
are the numerical values taken directly from [19], rows marked
with it “AF” are the values computed by the asymptotic formula
[20]

(19)

where is given by

(20)
and , rows marked with “FMM” are the results of the
current FMM accelerated numerical method. The values pre-
sented in these tables are normalized to the parallel-plate capac-
itance computed with formula .

Determining the coupling capacitances between signal lines
is of special interest to VLSI circuit designers. Fig. 14 depicts
a complex geometry consisted of five signal lines. The new
FMM-accelerated algorithm was employed to calculated the ca-
pacitance matrix when the structure is placed on top of a dielec-
tric slab. The dielectric slab is above the ground plane. The wires
have an 1.0 m 0.5 m cross section. The distances between
the wires are 1.0 m. The dielectric slab has . It is
of thickness 2.0 m and supports the conductors. As before, the
number of images included is 11. The problem contains 75 318
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Fig. 12. Capacitance of a sphere with varying distance to the dielectric layersh = 0:1 m, � = 2:65.

Fig. 13. Circular microstrip disk with radiusa is separated from the ground
plane by a dielectric substrate with relative permittivity� and thickness�.

TABLE I
NORMALIZED CIRCULAR DISK CAPACITANCE AS A FUNCTION OF d=a

FOR � = 1:0

TABLE II
NORMALIZED CIRCULAR DISK CAPACITANCE AS A FUNCTION OF d=a

FOR � = 2:65

unknowns, and is solved using six levels. The order for outgoing
and local multipole expansions is three. The interpolation of the

TABLE III
NORMALIZED CIRCULAR DISK CAPACITANCE AS A FUNCTION OF d=a

FOR � = 9:6

Fig. 14. This conductor geometry is used to demonstrate the ability of the new
algorithm to handle complex structures. The signal lines are 1.0�m in width,
and 0.5�m in height. The distance between the conductors is 1.0�m.

translation matrices is done by the cubic spline function with
40 nodes. Table IV compares the entries of the capacitance ma-
trix for this structure in free space and in the presence of the
dielectric interface. Note that conductor 1 has the air bridge in
the middle and conductors 2 and 3 are the straight signal lines.

The efficiency of the method presented in this paper is shown
in Figs. 15 and 16, where the CPU time per iteration and the
memory usage of the two-layer dielectric medium case is plotted
in comparison with the free-space case. This benchmark test was
run with a unit-radius conducting sphere above a layer of dielec-
tric material and the ground plane. The center of the sphere is
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TABLE IV
EFFECT OF ADIELECTRIC SLAB ABOVE GROUND PLANE ON THE ELEMENTS OFCAPACITANCE MATRIX

Fig. 15. Computation time of FMM capacitance solvers.

Fig. 16. Memory usage of FMM capacitance solvers.

2.5 m above the dielectric interface. The order for outgoing and
local multipole expansions is three. The new method is seen to
still have an computational and memory complexity that
approaches as .

The largest case in Figs. 15 and 16 contains 401 408 un-
knowns. The memory used for the free-space case and the mul-
tilayer case were 533 and 565 MB, respectively. This is the lim-
iting case since our DEC Alpha 21164/600 workstations has
512 MB of memory and 1 GB of virtual memory. On a slower
SGI Power Challenger that has 2 GB of memory, a sphere con-
sisted of 1 204 352 unknowns were solved using eight levels.
The computation took 1391.5 s per iteration and used 1.44 GB

of memory. As a comparison, the free-space FMM took 966.8 s
per iteration and used 1.39 GB of memory.

This algorithm was coded in C . Unless otherwise noted,
all CPU times in this section were taken from a DEC Alpha
21164/600 workstation.

APPENDIX

Due to the property of the scale invariance of Laplace’s equa-
tion, it is advantageous to normalize the outgoing and local mul-
tipole coefficients on each level with respect to the level’s cube
size. Let be the current level cube size andand be the
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child and the parent level cube sizes, respectively. With normal-
ized coefficients, we have an order outgoing multipole ex-
pansion of monopole

(21)

The translation from the order child-level outgoing multi-
pole to order parent-level outgoing multipole in the first stage
of the FMM is governed by

if (22)

The order outgoing multipole to order local multipole
translation in the second stage of the FMM is governed by

(23)

Finally, the translation from the parent-level order local
multipole to child-level order local multipole in the second
stage of the FMM is governed by

if (24)

These formulas were first derived by the Feng [21] and later
rederived by Zhao and Chew [22]. They differ from those that
exist in the open literature.
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