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A Fast Multipole-Method-Based Calculation of the
Capacitance Matrix for Multiple Conductors
Above Stratified Dielectric Media

Yuancheng C. Pan, Weng Cho Chéwellow, IEEE and L. X. Wan

Abstract—An efficient static fast-multipole-method (FMM)-  inversion require®)( N3) operations. The computation cost can
based algorithm is presented in this paper for the evaluation of the pe greatly reduced by using an iterative method, which requires

parasitic capacitance of three-dimensional microstrip signal lines 2 : ; : ;
above stratified dielectric media. The effect of dielectric interfaces ﬁgt\rfix) i(;pOe(r]zi;IQ(;ns periteration. The storage requirementfor the

on the capacitance matrix is included in the stage of FMM when / ) )
outgoing multipole expansions are used to form local multipole ~ The evaluation of potentials, done by a matrix—vector
expansions by the use of interpolated image outgoing-to-local multiplication, is often the most expensive part of an iterative
multipole translation functions. The increase in computation time  ethod. The static EMM developed by Greengard and Rokhlin

and memory usage, compared to the free-space case, is, therefore . . .
small. The algorithm retains O(IN') computational and memory performs a matrix-vector product i@(/V) calculations [9],

complexity of the free-space FMM, whereN is the number of [10]. Leathrum and Board produced a parallelized version
conductor patches. of this algorithm [11]. Recent work by Nabors and White
incorporated static FMM into a fast algorithm for extracting

I. INTRODUCTION the capacitance matrix of multiple conductors either in a

omogeneous dielectric medium [12], [13] or in an arbi-

ECENT advances in the very large scale integration (VLSIBary piecewise-homogeneous dielectric medium [14], [15].

technology fl_thher the n_eed for fast and_ accurate CaICUIatiS?Qndhyalaet al. extended the static FMM to geometries that
gf the c_apalcngnge anld_ lndgctance matrices _Of gheneral threeve multiple conductors and multiple dielectric interfaces by
|men3|ona.( ) ), mu ticonductor structur'es In the prefsen((‘:(?)nsidering the image charges as additional sources [16], [17].
of layered dielectric interfaces. In calculating the capacitance, s paper, we will also study conductor geometries that
matn_x_, one attractive approach is tq compute the Char_%lude multiple layers of dielectrics with an FMM. The nov-
densities on the con_ductor surface_s using an integral equaugﬁy of our method is that the effect of dielectric interfaces are
The kemel of the integral equation can be the free'Sp"]‘é}Qactly accounted for to within numerical precision. Also, the

Greep’s function m or the close_d-form spatial Gregn’&PU workload is only slightly more than that of the free-space
functions [2]-[5]. This integral-equation method only requireg,

he di Y ¢ th ; ¢ th q ﬂqge;orithm. Furthermore, the dielectric interfaces do not affect
the discretization of the surfaces of the conductors a stage of recursive division of the space occupied by the con-

f|n|te.d.|elec.tr|cs and, therefore, S much more efficient thag, ., structures, the stage of forming outgoing multipole ex-
the f|n|te-d|fference.(FD) and f|n|.te-element (FE) methOdBansions, and the stage of forming local multipole expansions
[6]-(8]. when. the mtegral equation can be solved _at flom the parent-level local multipole expansions. The effects of
low computation cost using, for example, the fast mUItIpOIt‘?ielectric interfaces to the capacitance matrix are included in

method (FMM). the stage when outgoing multipole expansions are used to form

The method of moments (MoM) can be used to solve the IScal multipole expansions. The bookkeeping of this method,

tegral equation of unknown charge densities by expanding t{Pf%zrefore, is quite simple. It also has the advantage that the pres-

charge densities with a set of basis functions. The expansign. . ¢ layered dielectrics and, hence, the presence of image

reduces the mtegrgl lequatlorg toa ld,elns,e m:t”é equrfm(?n tgﬁérge panels, does not enlarge the spatial size of the conductor
computes a potential vector by multiplying the Green's funcs 1 re needed to be enclosed. This new method retains the

tion matrix with a vector of charges. A rudimentary approach t@(N) computational complexity of an FMM and hex )
solving this matrix equation for the vector of charges is by dihemow requirement a¥ — oo

rectly inverting the dense Green’s function matrix. Such matrix
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z - Thhe surfa_ce o:] thlt\a/lccli/lnd:ctor_s islt_ji_scretized iNtctriangngr
f tl ) ty,
() - T e e . T

conductor #4 potential on théth patch can be written as

N, o N /
Pt ;P
v = E / ds’ + E E / ds :
— k=1 YTk v —v'| o s — x|

conductor #2

z=-h; — conductor #3 € . . (5)
=, +hy) — - where T}, is the surface of théth triangular patch. If (5) is
z=-(h | +hy +hy) —, £ solved forp, whenW, = 1if T; € S,,, and when¥; = 0 if
: T, € S,,, then thenmth element of the capacitance matrix is
—_ -/
z=-th; +hy+ ... +h) €L Cnm: Z . (6)
Fig. 1. Multiple conductors lying above stratified dielectric media. LTiES,

Equation (5) can be discretized through the MoM in the form

One method of calculating the capacitance matrix is to findf : .
of a matrix equation of unknowp;

the charge distributiop(r) on the surfaces of the conductors.

The capacitance matrix is defined by the relation T =M-p. @)
M
Q, = Z ComVin (1) The matrixM in (7) has the elements
m=1 =)
. ! 1 ! Vi
wheren =1, 2, ..., M, @, is the total charge on conductor M :/T ds T — 7| + Z /7. ds e —r/| (8)
d =1 k

n, andV,, is the voltage on conducten. The nmth element

of the capacitance matrix,,,, can be found by calculating,,  \yhen (7) is solved fop using the iterative conjugate gradient
induced on conductot when conductorr is at 1 V, while all (CG) method, the computation cost of each iteratio@ &V2).

other conductors are at O V. _ _ A static FMM can be used to reduce this cos&xaV).
The total charge on conductaris found by integrating the

charge density,,(r) over the surface of the conductor . SIMPLE VIEW OF THE FREE-SPACE STATIC FMM

Q, = / dS’ pn(r') 2) Consider a group ofV charges located within a sphere of
S, radius Z; around some origin. The potential because of these

whereS,, is the surface of conducter and the charge densityCharges outside of the sphere can be written as an expansion of

p is the solution to the integral equation outgoing spherical harmoniesbout the origin [18]
M / o M I = My
\I/(I‘) _ Z / ds’ pn(r? +Z Z / dS/pn,z(r/)’ \I/(I‘) = Z Z ) Ynm(e, (/)) (9)
n=1 75 e—v| e s v — 1’| n=0 m=-n
‘r€Sy; m=1,..., M. (3) whereM,,,, are the outgoing multipole coefficients given by
In (3), ¥ is the potential S¢ is the surface of théth image of N
conductorn, and ), ; is the charge density on thiéh image Mo =3 @i(r))" Yo, (6, 67) (10)
of conductorn. The image charge densit; ; is related to the i=1
original charge density,, by a scalar factof; given by andY,,,,(8, ¢) are the spherical harmonics. The potential can
Pl (T + 2AL) = vipa(r). (4) be approximated by summing the expansion to a finite grder
For a dielectric interface at = hy, with thicknessh,, above _ L " Mum
ground plane, the scalar factoysare given by U(r) ~ Z Z prtl Yom(0, 4) (1)

n=0 m=—n

€Q — €
= CET; with an error boundx(R; /r)P*1. Suppose we wish to com-
‘ pute the potential aP field points outside of a sphere of ra-
_ (e—ea\" 2« 2e9 dius 2, about the same origin, witR, > R; (see Fig. 2). The
Ti= €0+ €2) €otea €9+ €2 naive direct approach will requir® P operations. However, if

N andP are very large, and the upper limit for the error bound
can be smaller than the specified tolerance for sprsch that
=—2—2h (p+ 1) < N, P, then the potential aP field points can be

andA,, are given by

A

A, =—z—2h; —2(i — 1)hy L—(+1Y,, .. (8, ¢) is known as the outgoing multipole or spherical har-
] monic expansion because it represents a field that is outgoing and vanishes at
wherei = 2, 3, .. .. infinity.

#1
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and then use the coefficients in the local multipole exparision
via the formula

P J
2D L) Y6, 6),  1=1,...,N

P T i=0 k=—j
e [ e (13)
- \ Do s to evaluate the potential at th¥ field points within the box
— 3 inside the circle of radiug?;. The expression for/* (r;) in

(12) is given in the Appendix. It should be noted that the error
bound for using the truncated local multipole expansioris
(Ry/R,)r*+!. The computation cost iB(p + 1)* + N(p + 1)2
operations. This is much cheaper than a direct calculation.

A simple two-level free-space static FMM is outlined in the
following steps to show how outgoing and local multipole ex-
pansions can be used to reduce the computation cost of the ma-

trix—vector multiplication in (7).
Fig. 2. If the charges are distributed inside the sphere of raiyshen the .
potential at field points outside of the sphere of radRis can be evaluated Step 1) Box the conductor structure using a cube, and then

efficiently by first constructing the outgoing multipole expansion and then partition the cube intd” equally sized child cubes.

applying (11). Step 2) Normalize all distances with respect to the side
length of the child cubes.

Step 3) TakeR; = \/_/2 and R, = 1.5, and determine the
order of the outgoing multlpole expansipmeeded
to achieve the desired accuracy.

Step 4) Calculate outgoing multipole coefficients for each
child cube by (10). We call this the aggregation of the
different source fields into one common multipole
field centered within each box.

Step 5) Calculate local multipole coefficients by translating
the outgoing multipole expansions outside of the
sphere of radiug; into the circle of radiugi; (see
Fig. 3). This is repeated for each child cube.

Step 6) For each field point within a child cube, calculate
the potential due to charges outside of the sphere of
radiusR; using the local expansion and (13). We call
this the disaggregation process, as it is the reverse of

the aggregation process.

Fig. 3. If the charges are distributed outside of the sphere of rddiiushen — gtay 7) For each field pointin a child cube, calculate directly

the potential at field points inside of the sphere of radiyscan be evaluated . L .

efficiently by first separating the charges into small groups, then constructing the the potential due to the charges within the given cube

outgoin_g multipole expansjon for each group, and then tran_slating the multipole and the cubes that are contiguous to the given cube.

expansions to a local multipole expansion, and then applying (13). The efficiency of the two-level algorithm outlined above can
be improved through the use of multilevel algorithms. Detailed

evaluated efficiently by first constructing the ordgeoutgoing description of such algorithms can be found in [10] and [12].

multipole expansion inV(p + 1)? operations, and then com-

N
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puting the potential using the outgoing multipole expansion in IV. TWO-LEVEL MULTILAYER STATIC FMM
P(p+1)? operations. The total operation count of this approach o ) )
is (N + P)(p+1)? < NP. This s especially true iR, > R, . Because of its simplicity, we will use the two-level algorithm

Consider the situation in Fig. 3. There dréboxes, each with to illustrate the incorporation of layer dielectric effects. When
an outgoing multipole expansion of ordeoutside the sphere * solving a multilayer electrostatic problem using the method of
of radiusR,. We wish to compute the potential due to these oumages, the dielectric media are replaced with image charges at
going multipole expansions & field points inside the sphere aPPropriate locations. We will not work directly with the image
of radiusR, . It has been shown that, in this case, we can tr(,j“,]g”_larges. Instead, we will utilize the images of the outgoing mul-

late theP’ outgoing multipole coefficients of ordgito one local  t1POle _e>.<pansi0|t15 to create an efficient FMM algorithm.
multipole coefficients of the same order using formula Definition 4.1: Theth image cube of a cube is tli mirror

image of the given cube.

P op " The concept of image cube can help us compute the image
Z Z ol (r) M) | j=0,...,p; outgoing multipole expansions from the original outgoing mul-
=1 n=0 m=—n
k=

2r))Y;.(8], #;) is known as the incoming or local multipole expansion
(12) because it represents an incoming field regular, at 0.
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Fig.4. Image cube is similarly defined as the image charges, i.etftirmage

cube is the'th mirror image of the original cube.

«

e

Fig. 6. In the presence of multilayer medium, there are source
outgoing-to-local multipole translations as well as image outgoing-to-local
multipole translations.

wherer is the vector between and the cube center andis
the side length of the cubes. The spherical harmonics have the
well-known property that

nrn(e d)) ( )n+rnann(7r - 97 d)) (15)

Using this property, the ordenn outgoing multipole expansion
of theith image charge, with strengtfyg, about theith image

cube center is
= M (7_) Yvn,—rn(']r - 9, d))
a a

= (_1)n+n17iMnrn(r)-

My, (x")

(16)

For a simple two-level multilayer FMM, we can modify

Fig. 5. Multipole expansion of an image charge is formed with zenith angtep 5 of the free-space algorithm to include the translations

T — 0.

of image outgoing multipole expansions (see Fig. 6). The
translation of one outgoing multipole expansion to a local

tipole expansion. Itis easy to see from Fig. 4 that if an outgoirgpansion of ordefk now takes the form of

multipole expansion is constructed from a charge with respect
to the center of a cube, then tlith image outgoing multipole

expansion of this outgoing multipole expansion is the expan-L;, =

sion of the:th image charge with respect to the center ofithe
image cube.

In calculating the outgoing multipole expansion of the image
charge, we note that the zenith angle between the image charge
and image cube center is changedrte ¢, as shown in Fig. 5.

The normalized (with respect to the side length of the cubes)
order nm outgoing multipole expansion of chargeabout a
cube center is given by

Mym(r) = % (g)nYn,—m(ev oy (14)

EPI Z i (0, )Mo

v S

+ii Enj i (75 B3 §)(=1)" "% M
i1 0 m=n

Y S ah 6 Mo

=0 m=—n

+§p: En: & (17, 01, ) M- (17)

n=0 m=—n
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Functionad® (v, 61, ¢) in (17) is defined as ¢
dg:n(TI? 917 Z Mm 717 917 d))( )n+rn,yi' (18)

In defininga??,, we used the factthat, 3 . can be determined
from r; and the dielectric thlcknesses. In practice, the infinite
sum in (18) can be truncated. Since the absolute valug of
monotonically decreases with increasin@ simple procedure
is to neglect images with the absolute value giess than some
preset small value.

V. MULTILEVEL MULTILAYER STATIC FMM

The algorithm described in Section IV is quite simple and ig
for pedagogical purposes. The approach is impractical beca
computing the outgoing-to-local multipole translation functions
¥ andaZk on the fly is very expensive.

For the discussion of a more sophisticated multilevel algo
rithm, we need the following definitions from the free-space
multilevel FMM.

Definition 5.1: Nearest neighbors of a cube are the same
level cubes that shared at least one corner with a given culiég. 7. Shaded cubes are the possible interaction cube locations oftube
There are, at most, 26 nearest neighbors to a given cube.  Whenz = 0.

Definition 5.2: Interaction cubes of a cube are the children of
the nearest neighbors of the parent of the given cube, excluding =g

the nearest neighbors of the given cube. There are, at most, 18¢ 7
interaction cubes to a given cube. — / _______
Inthe free-space multilevel FMM, the sources are enclosed in S

a large cube. This large cube is named the level-0 cube, which is
divided into eight equally sized level-1 child cubes. Each child
cube is recursively subdivided into smaller cubes until none of /
the finest level cubes contains more than a fixed number of
source patches. The relationships between the cubes are store
in a tree structure. epsl
For a cube on a given level, only the outgoing multipole ex-  eps2
pansions from the interaction cubes are translated to the local
expansion of that cube. In the free-space static FMM, there are
316 possible interaction cube locations (see Fig. 7) and, there- {7 A e /
fore, 316 unique outgoing-to-local multipole translation ma- | j | N
trices. Furthermore, because of the scale-invariance property of | :
electrostatics, one set of this 316 unique outgoing-to-local mul-  ---/- 3
tipole translation matrices can be used by all levels if outgoing !
and local multipole expansions are constructed using normal- | j :
ized distances. This set of translation matrices are calculated .....i b i 7
and stored beforehand. The problem becomes much more C?—m 8. Relative position of cubg to cubeD is the same as culf¢’ to cube
plex in the presence of a multilayer dielectric medium. Sm(ﬁ’ but because the absolute coordinates of dltend cubeD’ are different,
the location of the first image of a cube is related to its absolute outgoing-to-local multipole translation from cuBg... to cubeD is not
z-coordinate, for the.th level of a tree structure, there are aph® same as from cut, . to cubeD”.
proximately2” x 316 unique image outgoing-to-local multipole
translation matrices. There are2!’ possiblez-coordinates for level cube cen-
This requirement is evident in Fig. 8, in which two differenters, which give rise t@” x 316 unique matrices for image
sections of a tree level are shown with their first images. Thitgoing-to-local multipole translations. The required number
outgoing-to-local multipole translations from source cuéb® of levels is proportional t@>(log(NV)); hence, the storage re-
destination cubé and from source cub#’ to destination cube quirement for the image outgoing-to-local multipole translation
D’ use the same translation matrix, but because cilbesid matrices becomes unacceptable very quickly with the number
D’ have different-coordinates, the outgoing-to-local multipoleof unknowns.
translations from the image of culseto cubeD and from the  To alleviate the excessive memory requirement, the transla-
image of cubes’ to cubeD’ will use two different matrices.  tion functioné®, (r7, 8, ¢) is rewritten asi’® (z; =, v, 1).

nm

z=-h

PR SR
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Fig. 9. Accuracy of the interpolation ¢f?(z; » = 1.0, y = 1.0) with 40 nodes.

Here,l is the level number an@:, y, z) is the normalized (with ¢ ~ 40 MB. This number drops te~17 MB and~6 MB
respect to the cube side length of ledeCartesian representa-for the respective multipole expansion orders of three and two.
tionof (r7, 07, ¢). There are 49 different’*, (z; =, y, I) func-  Since higher order multipole fields decay much faster with dis-
tions for levell, one for each unique combination @f, v). As tancer than lower order multipole fields, it is memory efficient
mentioned above, computig”, (z; z, y, [) onthe fly is very to interpolated’* (z; z, v, I) for = > 3.0 and only up to the
computationally intensive. The computational complexity cagquadrupole terms. The image outgoing-to-local multipole trans-
be greatly reduced with an interpolation technique like the welltion matrices ofi/* (r;, 67, ¢) are calculated and stored for
known cubic spline function. Sineg’” (r) is a smooth function the cubes whose normalized center-to-dielectric distance is less
that decays rapidly with increases in the magnitude, afccu- than 3.0. It should be pointed out that because these cubes are
rate interpolation is possible with logarithmic spacing. A twoelose to one of the sides of the level-0 cube (see Fig. 10), only
interface geometry, with a normalized dielectric thickness gfrtial sets of the 316 image outgoing-to-local multipole trans-

0.4, is used to illustrate the accuracy of the interpolation. Figl&ion matrices are required.

is a plot of the relative error of interpolating)(z; =, v, 1). To save CPU time, we note that in the free-space algorithm,
A maximum relative error of about 2% was achieved with 4the maximum normalized distance for an outgoing-to-local
nodes. multipole translation i3v/3. In the multilayer algorithm, on

In a free-space static FMM, the memory requirement is the other hand, the distance for an outgoing-to-local multipole
N + b, wherec; ~ 4 kB andb ~ 8 MB. In multilayer static translation can be very large, especially for the image of an
FMMs, the memory requirementds - N + ¢ -log(/N)+b. The outgoing multipole expansion that is high above the dielectric
constantc, represents the additional memory requirement fanterface. When this is the case, we can translate only the
the image terms. The value of is proportional to the order of monopole and dipole terms of the image outgoing multipole.
multipole expansions and to the number of nodes used to int8ince the number of multipoles for an expansion of orgder
polate the image outgoing-to-local multipole translation fundgs (p + 1)2, the saving in the number of operations is very
tions. When the order of multipole expansion is four and thggnificant.
number of interpolation nodes is 4}, ~ 40 MB. For this algorithm, the worst CPU performance observed is
approximately four times that of the free-space algorithm. This
is caused mainly by the cubic-spline interpolation. For the most
common scenario of a thin microstrip printed on top of a mul-

The multilevel multilayer static FMM can be optimized intilayer dielectric medium, the CPU time is less than two times
terms of memory use and CPU time. that of the free-space algorithm. If the conductors are far above

As mentioned in Section V, when the order of multipole exhe dielectric interface, the increase in CPU time is almost neg-
pansion is four and the number of interpolation nodes is 4iggible.

VI. OPTIMIZING MULTILEVEL MULTILAYER STATIC FMM
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Fig. 10. There are 178 and 218 possible interaction cube locations, respectively, and, therefore, 178 and 218 possible image interactioonsutoe tbeati
two layers of cubes that are closest to the dielectric interface.

z The algorithm is employed to calculate the fringing field ef-
fects on the capacitance of a circular microstrip disk with unit
radiusa (Fig. 13). The accuracy of our method is further verified
by comparisons to the numerical results in [19] and the asymp-

x-y plane totic formula in [20]. In Tables I-lIl, rows marked with “NM”
T are the numerical values taken directly from [19], rows marked
h with it “AF” are the values computed by the asymptotic formula
| [20]
8 8 8 2
Cm 4260 | S — 244+ 22 | (In S+ 4-1) —2
6 6 e, 6
19)
where A is given by
=] 1— € n
Fig. 11. Conducting sphere lying above two layers of dielectrics. A=-2¢ Z <1 +e ) 111(n) telnm+ (6” - 1) In2+1
n=1 T
(20)
VIl. NUMERICAL RESULTS ande,. = ¢ /¢o, rows marked with “FMM” are the results of the

) ) ) current FMM accelerated numerical method. The values pre-
The accuracy of the method outlined in the previous sectiQq@pted in these tables are normalized to the parallel-plate capac-

is tested for the case of a unit sphere in the presence of twoglince computed with formul@ = ¢, /6.
electric interfaces, as shown in Fig. 11. The unit sphere is cenpetermining the coupling capacitances between signal lines
tered at the origin and is in free space. The first interface occygsof special interest to VLSI circuit designers. Fig. 14 depicts
atz = —h, with ¢ = 2.5¢9. The second interface occurs ak complex geometry consisted of five signal lines. The new
z = —h — 0.1. In Fig. 12, the capacitance of the conductorMM-accelerated algorithm was employed to calculated the ca-
sphere as calculated by the multilevel multilayer static FMMacitance matrix when the structure is placed on top of a dielec-
is plotted, along with a plot of the relative error comparing teric slab. The dielectric slab is above the ground plane. The wires
the values calculated by the MoM. A total of 11 images weiigave an 1.Qum x 0.5 um cross section. The distances between
included in the calculation, with;; = —6.3 x 1073, More im-  the wires are 1.um. The dielectric slab has. = 2.65. It is
ages can be included at the cost of longer setup time, but tifehickness 2.Q:m and supports the conductors. As before, the
CPU time per iteration will not be affected. number of images included is 11. The problem contains 75318
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Fig. 12. Capacitance of a sphere with varying distance to the dielectric layets0.1 m, e, = 2.65.

z TABLE Il
NORMALIZED CIRCULAR DISK CAPACITANCE AS A FUNCTION OF d/a
FOREe, = 9.6

é/a| 01| 02| 03| 04| 05| 06| 07| 08| 09| 1.0
AF | 112 1123134 |1.46|1.58 | 1.71 | 1.83 | 1.97 | 2.10 | 2.24
| NM |1.11|1.23|1.34|1.46|1.58|1.70|1.82}1.94 |2.07|2.19
FMM [ 1.13 | 1.23 134 [ 1.46 | 1.57 | 1.69 1 1.82 | 1.94 | 2.06 | 2.20
N\ X-y

2 1 *
€, & 2
¥ n

conductor disk

ATV
VEOA
s Vabip
¥

‘J

L)

AT
\PAVAR 4

N ground plane

&

Fig. 13. Circular microstrip disk with radius is separated from the ground
plane by a dielectric substrate with relative permittivityand thickness.

TABLE |
NORMALIZED CIRCULAR Disk CAPACITANCE AS A FUNCTION OF d/a
FORe,. = 1.0 -6

6fa| 01| 02| 03] 04| 05) 06) 07| 08 09) 10 Fig. 14. This conductor geometry is used to demonstrate the ability of the new
AF | 1.32 11,57 1.82 1205 | 2.27 | 2.48 | 2.69 | 2.89 | 3.08 | 3.27 algorithm to handle complex structures. The signal lines arg:fnQn width,

NM 1321158 1.83|208)232]256 | 280 |3.05)329 353  and0.5um in height. The distance between the conductors ig:m0
FMM | 1.31 | 1.57 | 1.82 | 2.06 | 2.31 | 2.55 | 2.80 | 3.04 | 3.28 | 3.52

translation matrices is done by the cubic spline function with
TABLE I 40 nodes. Table IV compares the entries of the capacitance ma-
NORMALIZED CIRCULAR D'FSOKRSAPjC!ZT%'\éCE As A FUNCTION OF d/a trix for this structure in free space and in the presence of the
T dielectric interface. Note that conductor 1 has the air bridge in
§/a] 0.1] 021 03] 04] 05] 06| 0] 08] 09| 1.0  the middle and conductors 2 and 3 are the straight signal lines.
AF | 1.18]11.34 | 1.50 | 1.65|1.81 1.97 | 2.13 | 2.30 | 2.46 | 2.63 The efficiency of the method presented in this paper is shown
NM | 11811341150 | 1.65 181|197 218|229 245|261 j, Figg 15 and 16, where the CPU time per iteration and the
FMM [ 1.17 | 1.33[1.49 | 1.64 | 1.80 | 1.96 | 2.12 [ 2.27 | 2.45 | 2.61 : ) ) .
memory usage of the two-layer dielectric medium case is plotted
in comparison with the free-space case. This benchmark test was
unknowns, and is solved using six levels. The order for outgoimngn with a unit-radius conducting sphere above a layer of dielec-
and local multipole expansions is three. The interpolation of tliéc material and the ground plane. The center of the sphere is
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TABLE IV
EFFECT OF ADIELECTRIC SLAB ABOVE GROUND PLANE ON THE ELEMENTS OF CAPACITANCE MATRIX

ey (fF) | ez (fF) | e13 (fF) | e1q (fF) | ¢35 (fF) | CPU time (sec) | memory (MB)
free space | 0.4816 | -0.0917 | -0.0917 | -0.0820 | -0.0820 6.9 199.5
dielectric | 0.7606 | -0.0814 | -0.0814 | -0.0807 | -0.0807 53.7 282.1

107 ¢ T T
+ free space
O dielectric interfaces

10° |

CPU time per iteration {sec)

10°

number of unknowns

Fig. 15. Computation time of FMM capacitance solvers.

+ free space
©__dielectric interfaces

memory (Mb}

number of unknowns

Fig. 16. Memory usage of FMM capacitance solvers.

2.5 m above the dielectric interface. The order for outgoing amfimemory. As a comparison, the free-space FMM took 966.8 s

local multipole expansions is three. The new method is seenper iteration and used 1.39 GB of memory.

still have anO(N') computational and memory complexity that This algorithm was coded in-€+. Unless otherwise noted,

approache®(N) asN — co. all CPU times in this section were taken from a DEC Alpha
The largest case in Figs. 15 and 16 contains 401408 W®1+164/600 workstation.

knowns. The memory used for the free-space case and the mul-

tilayer case were 533 and 565 MB, respectively. This is the lim- APPENDIX

iting case since our DEC Alpha 21164/600 workstations has

512 MB of memory and 1 GB of virtual memory. On a slower Due to the property of the scale invariance of Laplace’s equa-

SGI Power Challenger that has 2 GB of memory, a sphere cdion, it is advantageous to normalize the outgoing and local mul-

sisted of 1204 352 unknowns were solved using eight levetgole coefficients on each level with respect to the level's cube

The computation took 1391.5 s per iteration and used 1.44 GRBe. Leta be the current level cube size andanda, be the
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child and the parent level cube sizes, respectively. With normal{5]
ized coefficients, we have an order: outgoing multipole ex-
pansion of monopole
[6]
-

My(r) =2 (a)"Yn, (6, 8.

a

(21)
[71
The translation from the orderm child-level outgoing multi-

pole to orderik parent-level outgoing multipole in the first stage [g]
of the FMM is governed by

L\ (9]
gk (py = [ e _ 1 (IkHmHE—ml)/2
s = (=) a0
itk I n [11]
; i ,
<7i+m> <;_m> <a_> Y}fn, rnﬁk(ev ¢)7
¢ [12]
if jm—k|<j—n. (22)
. . ) , [13]
The ordernm outgoing multipole to ordejk local multipole
translation in the second stage of the FMM is governed by
(14]
0k (P = (—1yn(lk=mi—lkl—fmD/2 (@)7TH
il (1) =(=1) (%) 0
<j—k—|—n+m) <j—|—k—|—n—m)
[16]
n—+m n-—m
N Y}+n, rn—k(ev (/)) (23)
(17]
Finally, the translation from the parent-level ordet:. local
multipole to child-level ordefjk local multipole in the second
stage of the FMM is governed by [18]
n (19]
3k (1) = (— 1yt (mHmkHk)/2 [ Ge
Bika(®) = (-1) .
[20]
n+m\ [n—m r\"
_ Yo ke [21]
<j+k> <j—k> <a> S~

if m—k|<n—j. (24)

These formulas were first derived by the Feng [21] and later
rederived by Zhao and Chew [22]. They differ from those that
exist in the open literature.
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